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Virtual origin correction for lazy turbulent
plumes
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The location of the asymptotic virtual origin of positively buoyant turbulent plumes
with a deficit of initial momentum flux when compared with equivalent pure plumes
is investigated. These lazy plumes are generated by continuous steady releases of mo-
mentum, buoyancy and volume into a quiescent uniform environment from horizontal
sources (at z = 0) of finite area, and are shown to be equivalent to the far-field flow
above point source pure plumes, of buoyancy only, rising from the asymptotic virtual
source located below the actual source at z = −zavs .

An analytical expression for the location of the asymptotic virtual source relative
to the actual source of the lazy plume is developed. The plume conservation equations
are solved for the volume flow rate, and the position of the asymptotic virtual origin
is deduced from the scaling for the volume flow rate at large distances from the
source.

The displacement zavs of the asymptotic virtual origin from the actual origin scales

on the source diameter and is a function of the source parameter Γ ∝ Q̂2
0F̂0/M̂

5/2
0

which is a measure of the relative importance of the initial fluxes of buoyancy
F̂0, momentum M̂0, and volume Q̂0 in the plume. The virtual origin correction
developed is valid for Γ > 1/2 and is therefore applicable to lazy plumes for
which Γ > 1, pure plumes for which Γ = 1, and forced plumes in the range
1/2 < Γ < 1. The dimensionless correction z∗avs decreases as Γ increases, and for
Γ � 1, z∗avs → 0.853Γ−1/5. Comparisons made between the predicted location of the
asymptotic virtual origin and the location inferred from measurements of lazy saline
plumes in the laboratory show close agreement.

1. Introduction
Turbulent plumes are encountered in nature and in industry and on a variety of

different scales – from releases of hot ash during volcanic eruptions to the flow above
electronic components. Numerous field and laboratory studies have been conducted
over the years in order to examine the flow in and the flow induced by plumes, e.g.
Morton (1959b) measures the rise heights of plumes from industrial chimneys in order
to predict the spread of pollution in the atmosphere. The time-averaged behaviour
of turbulent plumes has been described theoretically by Morton, Taylor & Turner
(1956, referred to hereinafter as MTT), who derived similarity solutions expressing
the mean quantities in the plume as functions of the buoyancy flux and vertical
distance above the source. MTT model entrainment into the plume by relating the
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horizontal entrainment velocity to the vertical velocity in the plume at that height via
a (constant) entrainment coefficient. This approach has been widely applied to model
a variety of flows involving plumes. Much of this research is summarized by Turner
(1986) and List (1982). An improved description of the entrainment process in which
the entrainment is characterized in terms of the local fluxes in the plume is given by
Kotsovinos & List (1977).

In order to predict accurately the flow in a turbulent plume, it is essential to
model the source conditions correctly. The classical plume theory developed by
MTT assumes an idealized plume source, that is, a point source of buoyancy flux
with zero initial fluxes of volume and momentum. For clarity, source conditions
will be represented hereinafter using the notation (F0,M0, Q0), where the quantities
F0 = 2F̂0/π, M0 = 2M̂0/π and Q0 = Q̂0/π are proportional to the actual initial fluxes

of buoyancy F̂0, momentum M̂0 and volume Q̂0, respectively. For an axisymmetric
plume the actual fluxes are defined as

F̂ = 2π

∫ ∞
0

wg′r dr, M̂ = 2π

∫ ∞
0

w2r dr, Q̂ = 2π

∫ ∞
0

wr dr, (1)

where r denotes the radial or cross-plume coordinate, z the vertical coordinate, w(r, z)
the vertical velocity and g′(r, z) = g(ρe−ρ)/ρ0 the reduced gravity; ρ, ρe and ρ0 denote
the density of the plume, the environment and a reference density, respectively. In
most practical situations, plumes issue from sources of finite area, e.g. smoke plumes
from chimneys or plumes generated in the laboratory (§ 3), rather than idealized point
sources assumed in the plume theory. A separate calculation, or correction, is then
needed to relate the position of the actual area source we wish to model to a point
source located at a virtual origin before the theory can be confidently used to make
predictions.

A number of authors have investigated this problem and their virtual origin
corrections may be roughly grouped into four different categories: (i) corrections
based on empirical measurements; (ii) a ‘conical’ source correction; (iii) a jet-length
based correction; and (iv) a source correction based on the initial properties F̂0, M̂0

and Q̂0 of the plume.

1.1. Corrections based on empirical measurements

It is often possible to infer the location of the virtual origin by analysis of experimental
results (MTT; Turner 1966). For example, by graphically illustrating scaled quantities
in the plume as a function of the vertical distance z from the actual source, the virtual
origin may be determined simply by extrapolating a fit to the data for z < 0. An
estimate of the location of the virtual origin is given by the point of intercept of the
extrapolated data with the z-axis.

Another example of the use of empirical measurements to determine the location
of the virtual origin is given by Baines & Turner (1969) who theoretically predict and
make measurements of the position z0 of the first ‘front’ produced by an axisymmetric
plume in a filling box as a function of time t. Baines & Turner (1969) plot their
experimental observations in a form suggested by their theory, namely z

−2/3
0 against

t, and correct the measured height z0 iteratively by adding a constant length zv until
the modified height (z0 + zv)

−2/3 scales correctly (in this case linearly) with time. The
value of zv which provided the correct scaling was taken as the origin correction. This
technique was found to provide a sensitive estimate of the position of the virtual origin.

In an appendix to their paper, George, Alpert & Tamanini (1977) describe a
similar technique to determine the virtual origin from plume data. They note that
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the similarity solutions (Batchelor 1954) for the time-averaged vertical velocity w and
reduced gravity g′ in the plume, namely,

w ∝ (z − zv)−1/3, g′ ∝ (z − zv)−5/3, (2a, b)

may be written in the form

w3z = w3zv + k1, g′3/5z = g′3/5zv + k2, (3a, b)

where k1 and k2 are constants. Hence, the gradient of the plot of w3z vs. w3 or g′3/5z vs.
g′3/5 yields the location z = −zv of the virtual origin. George et al. (1977) suggest that
if fractional errors in the measurements of g′ and w are comparable, the position of
the origin inferred from buoyancy measurements, rather than from vertical velocity,
should yield a more reliable result as errors in g′ are raised only to the power of 3/5
(equation (3b)) whereas errors in w are cubed (equation (3a)).

1.2. ‘Conical’ correction

Schmidt (1941) observed that plumes of hot air rising from small sources into a
quiescent environment tend to be confined within conical regions when the flow is
turbulent. This early observation has been verified by numerous subsequent field and
laboratory studies. MTT present a simple method for determining the virtual origin of
a buoyant plume based on their classical plume theory and the plume’s conical shape.
They determine the location of the virtual source by treating a plume from a finite
area source as a circular cone. The bounding surface for the cone is chosen, somewhat
arbitrarily, by introducing an ‘effective’ plume radius which is defined as the radius
to points at which the mean amplitude of the profile (of velocity or buoyancy) has
decreased to, say, c% of the peak axial value, where c is small. The effective radius
may be deduced either from experimental measurement or predicted by plume theory.
Once c has been specified, the location of the virtual origin is determined simply by
tracing the cone back to its apex. This technique is depicted in figure 1 where it can
be seen that the displacement zv of the virtual origin from the actual source decreases
as c decreases.

Assuming Gaussian profiles† of the form exp (−r2/b2) for mean vertical velocity
and buoyancy profiles, the diameter D of the source in terms of the c% plume width

is given by D = 2b
√− ln (c) . The radius b of the plume as a function of the vertical

distance z from the source is described by b/(z + zv) = 6α/5 (see MTT) and, hence,
the virtual source is located behind the actual source and at z = −zv , where

zv

D
=

5

12α
√− ln (c)

. (4)

† Detailed measurements of mean flow quantities by Shabbir & George (1994) and Papanicolaou
& List (1988) indicate that the mean profiles of vertical velocity and buoyancy in turbulent plumes
are self-similar after 5 or 6 jet lengths (see § 1.3) from the source and are well described by
Gaussian profiles of the form A exp (Bη2), where η = r/z. There is, however, some uncertainty
in the literature regarding the most appropriate value for the coefficient A and the exponent B.
Measurements by George et al. (1977) suggest that the mean vertical velocity profile is wider than
the buoyancy profile – a result supported by the measurements of Nakagome & Hirita (1977) and
Shabbir & George (1994). However, Rouse, Yih & Humphreys (1952) and Papanicolaou & List
(1988) conclude the opposite result. George et al. (1977) found the numerical values deduced from
the early experiments of Rouse et al. (1952) to be in error as their measurements did not account
for the turbulent transport of buoyancy which contributes roughly 15% to the total buoyancy
transport. In light of these uncertainties, and for simplicity, we shall assume in § 2 that the vertical
velocity and buoyancy profiles have equal widths.
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z = 0

–zv(c2)
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D

Figure 1. The ‘conical’ correction technique for predicting the location of the virtual origin of a
plume. The actual source, of diameter D, is at z = 0 and the virtual source is at z = −zv . The virtual
origin is shown for two values of c with c1 > c2.

This correction assumes the flow in the plume is fully developed, i.e. of self-similar
Gaussian profile, at the actual origin. Although self-similarity of profiles is evident
sufficiently far from the source (Shabbir & George 1994; Papanicolaou & List
1988), profiles at the source are unlikely to be self-similar or Gaussian. Comparisons
presented by MTT between the experimentally determined displacement of the virtual
origin and the results predicted by (4) for c = 1% and c = 1/10% show reasonable
agreement and highlight the sensitivity of the prediction to the choice of c.

The location of the virtual origin may also be determined from the line defined
by the plume envelope. This is simple to determine from a photo or video still by
drawing a line along the edges of the turbulent region; the total angle θ enclosed
is approximately 18◦–20◦. This provides the following geometrical estimate for the
distance the virtual source lies behind the actual source:

zv

D
=

1

2 tan ( 1
2
θ)
. (5)

1.3. Jet-length-based correction

Morton (1959a) shows that the flow above a point source forced plume (F0,M0, 0)
of buoyancy and momentum only, develops into a pure plume at a vertical distance
above the source which scales on the momentum jet length Lm, where

Lm = 2−3/2α−1/2M
3/4
0

F
1/2
0

, (6)

and α denotes the plume entrainment coefficient (see MTT) appropriate for Gaussian
profiles. (A plume is ‘pure’ if the volume, momentum and buoyancy fluxes satisfy the
ratio 5Q2(z)F/4αM5/2(z) = 1. This constraint may be satisfied at the source (see § 1.4),
in which case the source emits a pure (or simple) plume, otherwise the ratio of the
local fluxes tends towards unity as the flow rises above the source.) The lengthscale
Lm represents the vertical distance over which the forced plume is driven primarily



Virtual origin correction for lazy turbulent plumes 381

by the initial momentum flux, i.e. where the flow is more jet-like than plume-like.
For z > Lm, the momentum flux generated by the action of the buoyancy forces
dominates the motion. The significance of Lm in characterizing the vertical evolution
of the flow from a buoyant source of non-zero initial momentum flux is discussed in
detail by Baker, George & Taulbee (1980).

By considering the solution of the plume conservation equations subject to the
boundary conditions F = F0, M = M0 and Q = 0 at z = 0, Morton (1959a) deduces
that the flow above the point source pure plume (F0, 0, 0) positioned at z = −1.057Lm
exhibits the behaviour of the flow from the source (F0,M0, 0) to within 1% for
z/Lm > 5. In other words, the virtual source is located a distance

zavs

Lm
= −1.057 (7)

behind the given source, see Appendix A. This correction is referred to as an asymp-
totic virtual source as the point source pure plume rising from z = zavs tends towards
the behaviour of the forced plume released from z = 0 only for sufficiently large
distances above the original source, in this case z/Lm > 5.

1.4. Source correction based on initial (F0,M0, Q0)

Morton (1959a) also presents a theoretical technique for determining the location
of the virtual origin of a plume from a more general extended, or area, source of
buoyancy, momentum and volume. Morton shows that it is always possible to relate
the flow above a general source (F0,M0, Q0) at z = 0 to an equivalent point source
forced plume (F0, γM0, 0), of buoyancy and momentum only, with modified strength
γM0 and modified position z = zv . The point source plume (F0, γM0, 0) at z = zv
is forced to satisfy the same equations as the plume from the general source, and
the momentum and volume fluxes in the two plumes are matched at z = 0 in order
to determine the location zv and strength γM0 of the modified plume. A parametric
solution for a plume issuing from the source (F0,M0, Q0) is given in terms of the
momentum flux and it is shown that the two plumes will be identical above the actual
source if the origin of the point source (F0, γM0, 0) is a distance

zv

Lm
= −101/2|γ|3/2sgnF0

∫ 1/|γ|

sgn γ

|T 5 − sgn γ|−1/2T 3 dT , (8)

from the actual source, where the modification factor

γ5 = 1− Γ , (9)

depends on the source parameter

Γ =
5Q2

0F0

4αM
5/2
0

. (10)

Both positive and negatively buoyant sources are considered by Morton and
sgnF0 = ±1 accordingly. Depending on the source conditions, as set by Γ , Mor-
ton’s solution, (8)–(10), predicts modified plumes with either positive or negative
initial momentum fluxes and sgn γ = ±1 according to whether γ > 0 or γ < 0,
respectively. In contrast to the asymptotic origin correction discussed in § 1.3, the
correction (8) is exact as the flow above the point source is identical above z = 0 to
the flow above the original extended source.

The source parameter Γ is the inverse square of a source Froude number, see
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Baines (1983), and provides a measure of the relative importance of the initial fluxes
of buoyancy, momentum and volume in the plume. Morton (1959a) categorizes
buoyant plumes in terms of Γ , defining forced plumes, i.e. those for which the initial
momentum flux is greater than that of an equivalent pure plume of the same initial
buoyancy flux, for 0 < Γ < 1; pure plumes as those with source conditions giving
Γ = 1; and lazy plumes, i.e. those in which the initial momentum flux is less than
that of a pure plume of the same initial buoyancy flux, for Γ > 1.

Morton’s (1959a) theoretical description (8) provides a practical solution for forced
buoyant plumes (0 < Γ < 1) and pure plumes (Γ = 1), however, for lazy plumes
(Γ > 1) it is physically unrealistic as it requires γ < 0, i.e. for the initial momentum
flux of the virtual point source to be directed downwards thereby resulting in flow in
both downward and upward directions near the source. The physical interpretation
of the solution for Γ > 1 is that forcing buoyant fluid downwards from a suitably
located point source allows the momentum flux generated by the action of the
buoyancy forces to cancel out the initial momentum flux and to subsequently produce
a broad ascending positively buoyant plume of appreciable volume flux but low ascent
velocity, i.e. a lazy plume, at z = 0.

The work of Morton (1959a) is extended by Morton & Middleton (1973) who
illustrate in a graphical form the location of the virtual origin, scaled on the jet
length, for plumes with source conditions corresponding to Γ < 5. These scale
diagrams indicate that for Γ & 1.25 the initial momentum of the modified source is
again directed downwards but from a point located above the physical source (see
solid curve labelled xvs in figure 2 of Morton & Middleton 1973).

The methods of Morton (1959a) as outlined in § 1.4 and § 1.3 can be combined
to give a two-step procedure for relating the flow above a general extended source
(F0,M0, Q0) at z = 0 to the flow from an asymptotic virtual point source (F0, 0, 0)
at z = zavs . The first step (§ 1.4) involves replacing the extended source (F0,M0, Q0)
with a virtual point source forced plume of modified strength (F0, γM0, 0) located at
z = zv . The sign of zv depends upon the source parameter Γ and may be positive
or negative. The second step (§ 1.3) relates the flow above this modified source to
a pure buoyancy source (F0, 0, 0) at z = zavs . Combining the two steps, the far-field
flow produced by the general source (F0,M0, Q0) at z = 0 may be related to the flow
above the point buoyancy source (F0, 0, 0) at the virtual origin z = zv + zavs . The full
‘two-step’ solution is not written down explicitly by Morton (1959a), although Morton
& Middleton (1973, figure 2, dashed curve labelled xavs) plot the two-step correction
as a function of Γ . For a buoyant area source with positive initial momentum flux
the two-step correction may be shown to take the following forms:

(a) Pure plumes (Γ = 1) from area sources may be related to the virtual source
(F0, 0, 0) in a single step as, from (9), the solution requires γ = 0. The correction is
exact and the virtual source (F0, 0, 0) is located at

zv

Lm
= −23/251/23−1 ≈ −2.108. (11)

(b) Forced plumes (0 < Γ < 1) require both steps. The momentum flux of the
modified source is positive as γ = (1 − Γ )1/5 > 0 and the total magnitude of the
two-step correction is

zv + zavs

Lm
= −101/2

∫ 1

γ

ν3(ν5 − γ5)−1/2 dν︸ ︷︷ ︸
zv/Lm

− 10−1/2γ3/2( 2
3

+ δfp)︸ ︷︷ ︸
zavs/Lm

, (12a)
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where

δfp =

∞∑
n=1

(
1

2n−1n!(3− 10n)

n∏
j=1

(1 + 2[j − 1])

)
. (12b)

Series (12b) sums to δfp = −0.3324 and thus, from (12a)

zavs

Lm
= −1.057γ3/2, (12c)

which is accurate to within 1% for z/Lm > 6γ3/2.

(c) Lazy plumes (Γ > 1) also require a two-step correction. The modified source has
negative momentum flux as γ = −(Γ − 1)1/5 < 0 and the two-step procedure yields

zv + zavs

Lm
= −101/2

∫ 1

−|γ|
ν3(ν5 + |γ|5)−1/2dν︸ ︷︷ ︸
zv/Lm

− |γ|3/23.253︸ ︷︷ ︸
zavs/Lm

, (13)

where zavs is accurate to within 1% for z/Lm > 4|γ|3/2.
In (a)–(c) above, the correction zv is exact and zavs appropriate at only large distances

from the actual source, thus corrections (12a) and (13) represent the location of the
pure buoyancy source (F0, 0, 0) from which the far-field behaviour of the extended
source (F0,M0, Q0) appears to tend and are thus asymptotic corrections.

Caulfield (1991) presents an alternative classification scheme based on the param-
eter Cc = 1 − 1/Γ and determines origin corrections for general extended plume
sources. By manipulating MTT’s plume conservation equations, Caulfield expresses
Q(z) as a function of Q0, F0 and Cc, and solves the resulting single equation numer-
ically. Caulfield (1991) deduces the asymptotic virtual origin for −∞ < Cc 6 1 (or,
equivalently, 0 < Γ < ∞) by tracing the evolution of the plume until it approaches
the pure plume solution of MTT. Caulfield also determines the source conditions for
which lazy plumes initially contract, or ‘neck’, as they rise above the source. Follow-
ing Caulfield we note that contraction occurs directly above the source if the rate of
change of the plume radius b with height satisfies

db

dz

∣∣∣
z=0

= 2α− 4αΓ

5
< 0, (14)

i.e. providing Γ > 2.5. By analysis of the plume undergoing contraction, Caulfield
(1991) deduces that a plume can accelerate above the source without contracting, but
not vice versa, as acceleration occurs directly above the source if

dwm
dz

∣∣∣
z=0

=
2g′m
wm
− 2αwm

b

∣∣∣
z=0

> 0, (15)

i.e. providing Γ = (5/4α)(bg′m/w2
m) > 1.25, where wm and g′m denote the axial vertical

velocity and reduced gravity, respectively. The analysis of Caulfield addresses plumes
with monotonic and non-monotonic mixing behaviours, for the latter case see also
Caulfield & Woods (1995).

In this paper we present a single-step method for determining the displacement
of the asymptotic virtual source (F0, 0, 0) from the actual source (F0,M0, Q0) of a
lazy plume. The approach we adopt is similar to that presented by Morton (1959a),
however, we show for lazy plumes that it is possible to describe analytically their
far-field behaviour in terms of a pure point source (F0, 0, 0), of buoyancy only, at the
asymptotic virtual origin zavs located behind the given source. Our analysis provides a
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physically realistic solution as it does not involve directing buoyant fluid downwards
with negative initial momentum flux and so avoids a region of counter-flowing fluid
near the source. We demonstrate that the appropriate lengthscale for the adjustment
of a lazy plume to a pure plume is the source radius, and an explicit formulation is
given for calculating the asymptotic virtual origin for source conditions corresponding
to Γ > 1/2. Experiments to measure the volume flow rate above lazy plumes are
conducted to compare with the theory.

2. Asymptotic virtual origin location for a lazy plume source
Assuming Gaussian profiles for vertical velocity and buoyancy and an unstratified

quiescent environment, the plume equations for conservation of volume, momentum
and buoyancy, under the Boussinesq approximation, may be written in the form

dQ

dz
= 2αM1/2, (16)

dM

dz
= 2

QF

M
, (17)

dF

dz
= 0, (18)

respectively, see MTT, where Q = b2wm, M = b2w2
m and F = b2wmg

′
m. Equation (18)

expresses that the buoyancy flux is conserved in an unstratified environment, hence,
F = const = F0. For a general area source, the source conditions are

Q = Q0, M = M0, F = F0 at z = 0. (19)

Equation (16) may be rewritten as∫ z

0

dz =

∫ Q

Q0

dQ

2αM1/2
, (20)

and, hence, from (17) and (20), we may eliminate z and write∫ M

M0

M3/2 dM =
F

α

∫ Q

Q0

Q dQ. (21)

Integrating (21) yields

M5/2 −M5/2
0 =

5F

4α
(Q2 − Q2

0). (22)

Scaling the variables in the plume on the source conditions, we introduce the non-
dimensional quantities

m =
M

M0

, q =
Q

Q0

, f =
F

F0

, (23)

and, hence, (22) reduces to

m5/2 = Γ (q2 − 1) + 1, (24)

where Γ , the source parameter, is defined in (10). In terms of the actual physical
fluxes

Γ =
5

27/2απ1/2

(
Q̂2

0F̂0

M̂
5/2
0

)
, (25)
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and rewriting (25) in terms of the source area A (= 1
4
πD2) and initial reduced gravity

g′0 = g∆ρ0/ρ0, where ∆ρ0 is the initial density contrast, we obtain

Γ ∼ A5/2g′0
Q̂2

0

. (26)

From (26), we note that Γ can be increased by increasing A, increasing g′0, or

decreasing Q̂0, in each case with all other quantities fixed. Thus, highly buoyant slow
releases from large area sources give lazy plumes. For the circular sources of interest
here, Γ ∼ D5 and, hence, Γ rapidly increases and the plume becomes increasingly
lazy as the area of the source is increased. Substituting (24) into the non-dimensional
form of (20) we have

z∗ =
3

5

∫ q

1

dq

m1/2
, (27)

where the vertical coordinate z is scaled on the initial pure plume radius

b0 = Q0/M
1/2
0 (∼ D) such that the dimensionless vertical coordinate

z∗ =
z

5

6α

(
Q0

M
1/2
0

) . (28)

Combining (24) and (27) leads to

Γ 1/5z∗ =
3

5

∫ q

1

(q2 − φ)−1/5 dq, (29)

where

φ =
(Γ − 1)

Γ
. (30)

Expanding the integrand in (29) in terms of φ/q2 we obtain

Γ 1/5z∗ =
3

5

∫ q

1

q−2/5

(
1 +

1

5

φ

q2
+

1

5

6

5

φ2

q4

1

2!
+

1

5

6

5

11

5

φ3

q6

1

3!
+ · · ·

)
dq, (31)

for |φ/q2| < 1; this constraint is satisfied over the entire range of integration for
Γ > 0.5. Integrating (31) term by term gives

Γ 1/5z∗ = 3
5
( 5

3
q3/5 + O(q−7/5)− ( 5

3
− 1

7
φ− 3

85
φ2 − · · ·)), (32)

which, when rearranged, gives the standard volume flux scaling in the limit of large
q, namely

q = Γ 1/3(z∗ + z∗avs )
5/3. (33)

The dimensionless asymptotic virtual origin is thus located at z∗ = −z∗avs , where

z∗avs = Γ−1/5(1− δ), (34)

and δ denotes the summation

δ = 3
35
φ+ 9

425
φ2 + 11

1125
φ3 + · · · = 3

5

∞∑
n=1

(
φn

5n−1n!(10n− 3)

n∏
j=1

(1 + 5(j − 1))

)
. (35)

The analogous solution for a two-dimensional turbulent lazy plume issuing from a
line source is presented in Appendix B.
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Figure 2. The position of the asymptotic virtual source z∗avs (from 34) as a function of the source
parameter Γ . · · ·–· · ·, The large Γ approximation z∗avs = 0.853Γ−1/5 (36) for Γ > 10.

The value of z∗avs from (34) is plotted as a function of Γ in figure 2. The solution
(34) predicts that, as Γ increases, the displacement z∗avs of the asymptotic virtual
source from the actual source decreases. In the limit as Γ → ∞, z∗avs → 0 and the
location of the asymptotic origin of the lazy plume coincides with the actual source.
This limit corresponds to an area source with zero initial volume flux, i.e. a source of
buoyancy alone (see (26)). An example of such a source is where a sun patch strongly
heats a region of the ground inside a room or building. As Γ → ∞, φ → 1 and
the series δ(φ) approaches a constant value δ(φ = 1) ≈ 0.147. The approximation
δ = 0.147 gives δ accurate to within 5% for Γ > 88 and the following expression for
zavs is therefore recommended

zavs

6αM
1/2
0

5Q0

= 0.853Γ−1/5 for Γ > 88. (36)

The number of terms of (35) required to give δ(φ), and hence zavs , to a given level of
accuracy increases as the plume becomes increasingly lazy (figure 3).

To compare the magnitude of the asymptotic correction (34) with the jet-length
based correction (7), zavs/Lm is plotted as a function of Γ in figure 4. With this scaling,
we may readily compare (34) with Morton’s integral solutions (12) and (13). Scaled
on the jet length (6), our asymptotic correction (34) takes the form

zavs

Lm
= −23/251/23−1Γ 3/10(1− δ) ≈ −2.108Γ 3/10(1− δ), (37)

and (37) is plotted in figure 4 for Γ > 0.5 as the solid line. Morton’s correction
(7) is shown as a cross at Γ = 0. The (two-step) correction (12) of Morton (1959a)
is shown as the dashed line for 0 < Γ < 1. With this scaling, the magnitude of
zavs/Lm increases as Γ increases. Note, however, that zavs decreases with increasing Γ

(figure 2). By expressing Γ as a ratio of the characteristic lengthscales Lm ∼ M̂3/4
0 F̂

−1/2
0

and La ∼ Q̂0M̂
−1/2
0 ∼ D (from (28)), namely,

Γ ∼ (La/Lm)2, (38)
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Figure 3. The minimum number of terms of (35) required to give δ accurate to within 1%, 2%
and 5% vs. Γ . Data is plotted for Γ > 0.5.

it is apparent that for a fixed source diameter D and, hence, fixed La, Γ increases
as Lm decreases – a decrease in Lm is achieved by reducing Q̂0 and/or g′0. For a fixed
supply rate Q0 of buoyant fluid, Γ increases as D is increased (see (26)). Thus, Γ
increasing may be interpreted as either (i) decreasing the jet length of a plume issuing
from a source of constant diameter – in this case zavs decreases with decreasing Lm
which is consistent with zavs/Lm increasing as Γ increases (figure 4), or (ii) the source
diameter increasing, and hence zavs increasing, for a fixed jet length – again consistent
with figure 4. For sufficiently lazy plumes, the jet length will be small compared with
the scale of the source and the transition from lazy plume to simple plume as the flow
rises above the source will occur over a vertical height which scales on the source
diameter. For these sources the jet length is not the appropriate scale.

When Γ = 1, φ = 0 and δ(φ = 0) = 0, the area source emits a simple plume and
(37) reduces to Morton’s (1959a) solution (11), or equivalently (34) reduces to

zavs

6αM
1/2
0

5Q0

= 1 for Γ = 1. (39)

As Γ → 0.5, φ → −1 and δ(φ = −1) ≈ −0.07083, (37) reduces to zavs/Lm =
−1.834. Morton’s integral solution (12) also yields zavs/Lm = −1.834 at Γ = 0.5. The
magnitude of our asymptotic correction and the corrections of Morton for Γ > 0.5
are identical.

3. Comparison with experiment
In order to test the theoretical predictions developed in § 2, experiments were

conducted in the laboratory using saline plumes. The experimental technique we used
was first described by Baines (1983) and provides a means of measuring directly the
volume flux in a turbulent plume.
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Figure 4. The position of the asymptotic virtual source zavs/Lm as a function of Γ . The jet-length
based correction (7) of Morton (1959a) is shown as the cross at Γ = 0. Morton’s (1959a) solution
(11) for a simple plume is shown as the cross at Γ = 1. ——, our asymptotic solution (37) for
Γ > 0.5; — —, the (two-step) solution of Morton (1959a) for a forced plume (12) for 0 < Γ < 1;
· · ·–· · ·, the first step.

Experiments were conducted in a clear Perspex tank (of uniform cross-sectional
area 64 cm × 64 cm and height 40 cm) filled with fresh water. A sheet of Perspex
with cross-sectional area equal to that of the tank was suspended horizontally in the
tank a few centimetres below the surface of the water. This sheet was perforated
with a number of holes and the plume nozzle, of outlet diameter 5 mm, was located
at its centre. Plumes were created by supplying brine to the nozzle, at a constant
flow rate, via a constant-head gravity-feed system. In this system, the buoyancy force
acts downwards, although for Boussinesq flows this reversal of the direction of the
buoyancy force (cf. a thermal plume) does not alter the dynamics of the plume, other
than reversing the sense of the fluid motion. The initial flow rate in the plume was
measured using an in-line flow meter. The density of the saline supply and of the
fresh water ambient was measured using a densitometer, and hence, the buoyancy
flux determined. The plume nozzle was designed specifically to produce a turbulent
plume and uniform velocity profile at the point of discharge.

The nozzle design, as conceived by Dr Paul Cooper of the University of Wollongong,
NSW, Australia, and illustrated schematically in Hunt & Linden (2001), is based on
exciting a turbulent flow inside the nozzle prior to the point of discharge. This is
achieved by means of an expansion chamber within the nozzle. Fluid fed to the nozzle
is forced through a ‘pin-hole’ (diameter 1 mm) and into a wide expansion chamber
(diameter 10 mm). The sharp expansion excites a turbulent flow in the chamber which
discharges from the nozzle through the exit opening (diameter 5 mm) after passing
through a fine gauge mesh.

Fresh water was supplied to the tank, above the Perspex sheet, at a known constant
flow rate. Simultaneously, fluid was drained from the base of the tank at the same flow
rate as the fresh water was supplied. Typical supply/drainage flow rates were in the
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range of 10–40 cm3 s−1 and initial flow rates in the plume were typically 1–2 cm3 s−1.
The sheet was used to prevent the supply of fresh water from creating disturbances
inside the tank.

The turbulent saline plume descended and spread out on reaching the bottom of
the tank to form a layer of salt solution. This lower layer increased in depth and
density until a steady-state flow was established. The steady flow consisted of a two-
layer stratification; a fresh upper layer and a lower layer of salt solution, separated
by a horizontal interface. When the interface reached a fixed elevation, a distance z
(cm) below the actual source, there was no flow across the interface other than in
the plume. Consequently, at the level of the interface the volume flow rate in the
plume was identical to the (known) volume flow rate at which the fresh water was
supplied to the system. Hence, by measuring the steady height of the interface below
the actual source, the volume flow rate in the plume at that distance from the source
was deduced. By varying the supply and drainage flow rates, the volume flow rate in
the plume was measured at various distances from the actual source.

A dye was added to the saline solution supplied to the plume; this dye coloured the
lower salty layer of fluid and allowed the position of the interface to be seen clearly.
The experiment was viewed through a video camera which was positioned as far from
the tank as possible in order to minimize parallax errors. The images were digitized
using the digital image processing system DigImage (Dalziel 1993), and the position
of the interface, which corresponded to a particular digitized intensity, was tracked.
To be certain of measuring the steady-state interface height, a time series of interface
positions was generated on each occasion the supply/drainage flow rate was changed.

In order to evaluate the location (34) of the asymptotic virtual origin, the source
parameter Γ characterizing the plume must be determined; this requires measurement
of the initial quantities Q̂0, F̂0 and M̂0. The source volume flux Q̂0 was measured to
within 0.2 cm3 s−1 using an in-line flow meter and the initial buoyancy flux F̂0 (= Q̂0g

′
0)

was deduced after measuring the reduced gravity g′0 of the saline supply to within

5× 10−5 cm s−2 using an Anton Paar density meter. The source momentum flux M̂0,
defined as

M̂0 =

∫
A

w2
0 dA, (40)

where w0 denotes the vertical source velocity, is more challenging to measure accu-
rately as it depends, not only on the initial volume flux, but also on the velocity
profile at the source. In turn, this profile depends on the details of the nozzle ge-
ometry and source Reynolds number. A technique for the (indirect) measurement
of M̂0 is available (see Appendix C) although it depends sensitively on an empirical
constant for which there is some considerable uncertainty in the literature regarding
the most appropriate value. Owing to this sensitivity and to the design of nozzle used
in the experiments (which produced a turbulent flow at the point of discharge) the
momentum flux was not determined from experimental measurement but predicted
based on the assumption of a uniform velocity profile at the point of discharge of the
nozzle, i.e. M̂0 = Q̂2

0/A.
Results of the experiments are plotted in figures 5 and 6 for source conditions

corresponding to Γ = 1.24, Γ = 2.61 and Γ = 3.93. The horizontal axis scale is based
on the flow rate scalings of MTT, and the vertical axis scale is the steady interface
height z scaled on the source diameter D. The ‘raw’ experimental data representing
interface heights measured above the actual source are shown in figure 5. These
measurements have been corrected, using (34), to account for the non-ideal source
conditions of the saline plume and are shown in figure 6. The source conditions used
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Figure 5. Volume flow rate measurements for a turbulent plume uncorrected for the virtual origin
of the source. ——, theoretical prediction for α = 0.09; �, Γ = 1.24; 4, Γ = 2.61; �, Γ = 3.93.
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Figure 6. Volume flow rate measurements for a turbulent plume corrected for the virtual origin of
the source. ——, theoretical prediction for α = 0.09; �, Γ = 1.24; 4, Γ = 2.61; �, Γ = 3.93.

in the experiments are shown in table 1. A sufficient number of terms of the series (35)
were summed to ensure that the correction zavs was determined at least to the degree
of accuracy with which the interface heights were measured during the experiments.
Interface heights were measured to the nearest mm and typically the first five terms of
(35) were required to achieve this accuracy. For the range of Γ considered, the sides
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Γ 1.24 2.61 3.93

Q̂0 (cm3 s−1) 1.71 1.51 1.09
g′0 (cm s−2) 76.6 126.5 98.2

F̂0 (cm4 s−3) 131.0 191.0 107.0

M̂0 (= Q̂2
0/A) (cm4 s−2) 14.9 11.6 6.06

Lm = 2−5/4α−1/2π−1/4M̂
3/4
0 F̂

−1/2
0 (cm) 0.698 0.479 0.393

La = 3−12−3/25α−1π−1/2Q̂0M̂
−1/2
0 (cm) 1.636 1.636 1.646

δ (from (35)) 1.746× 10−2 6.468× 10−2 8.348× 10−2

Morton zavs/Lm (from (7)) −1.057 −1.057 −1.057
(a) Hunt & Kaye zavs/Lm (from (37)) −2.209 −2.629 −2.913
(b) Hunt & Kaye −3.081 −2.528 −2.282

zavs/D = −3−12−5/25α−1Γ−1/5(1− δ)
(from (34))

Table 1. Source conditions of the saline plumes and comparison between resulting jet-length based
correction (7) and asymptotic correction (34) of § 2, (a) scaled on jet length, and (b) scaled on source
diameter. D = 0.5 cm, α = 0.09. With La as defined above, Γ = 322−35−1(La/Lm)2.

of the plume were close to parallel at the source. The ‘necking’ of the plume predicted
for Γ > 2.5 (see (14)) was not visible; however, the small scale of the plume source
(5 mm diameter) made flow visualization in the initial development region difficult.

The jet-length based correction (7) which does not account for the finite area of
the source, although it is often used to provide an indication of the magnitude of
the origin correction, yields zavs = 0.74, 0.51 and 0.39 cm for Γ = 1.24, 2.61 and 3.93,
respectively. This compares with zavs = 1.54, 1.26 and 1.14 cm, from (34).

By fitting a straight line through the corrected data (z + zavs )/D vs. Q3/5F−1/5/D a
value of α was determined for the experiments. For a point source pure plume, MTT
give

z = C−3/5Q3/5F−1/5, (41a)

where

C =
6α

5

(
9α

5

)1/3

. (41b)

The gradient we expect to see in the data (figure 5) is therefore C−3/5, and thus α can
be deduced from (41b). The slope of the line fitted yields α = 0.09 which is within the
range quoted in the literature; MTT found that a value of α = 0.093 agreed very well
with their data while experiments by Baines (1983) yielded α = 0.074. The theoretical
prediction (41) of MTT with α = 0.09 is shown in figures 5 and 6 by the straight line.

On comparing figures 5 and 6 it can be seen that the magnitude of the correction
for these experiments was of the order of 1.5 cm or approximately 3D. The corrected
measurements have collapsed onto the theoretical line and there is close agreement,
thus confirming the asymptotic virtual origin scaling for lazy plumes.

On the assumption of a uniform velocity profile at the source so that M0 = 23Q2
0/D

2,
the horizontal axis label Q3/5F−1/5/D on figure 5 may be expressed in terms of Γ at
z/D = 0 as

Q
3/5
0 F

−1/5
0

D
=

(
5

219/2α

)1/5

Γ−1/5. (42)

For a simple plume from an area source, Γ = 1, and so the theoretical prediction
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Figure 7. z/D vs. Q3/5F−1/5/D from (43) for Γ = 0, 1, 1.24, 2.61 and 3.93. From left to right, the
lines correspond to Γ = 0, 3.93, 2.61, 1.24 and 1, respectively.

of MTT intercepts the horizontal axis at λ = (5/219/2α)1/5 ≈ 0.598 (taking α = 0.09).
Assuming the gradient C−3/5 is appropriate for all source conditions Γ then

z

D
= C−3/5

(
Q3/5F−1/5

D
− λΓ−1/5

)
, (43)

which suggests that the plume appears to originate from a point at

z

D
= −λC−3/5Γ−1/5 = −3−12−5/25α−1Γ−1/5, (44)

or, equivalently, at

z∗ = −Γ−1/5. (45)

Equation (45) provides a first-order estimate (cf. (34)) of the location of the asymptotic
virtual origin. With Γ = 1, (45) agrees identically with (39) and thus with Morton’s
simple plume correction, although for Γ < 1, (45) underestimates, and for Γ > 1,
(45) overestimates the distance between the actual and virtual sources. Figure 7 plots
Q3/5F−1/5/D vs. z/D from (43), for Γ = 0, 1, 1.24, 2.61 and 3.93. Correction (34)
therefore accounts for the shift between the lines for Γ = 1 and those for Γ 6= 1,
as opposed to the (greater) shift between lines representing the point source solution
Γ = 0 and solutions for Γ 6= 1.

4. Conclusions
We have considered the location of the asymptotic virtual origin of forced buoyant

plumes generated by general extended sources (F0,M0, Q0) of non-zero initial buoy-
ancy, momentum and volume fluxes. Buoyant plumes are characterized by the source
parameter Γ and we present an explicit formulation for calculating the asymptotic
virtual origin for source conditions in the range Γ > 1/2. This correction encompasses
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a wide range of typical source conditions which include: (i) forced plumes (with an
excess of initial momentum flux compared with the equivalent pure plume) in the
range 1/2 < Γ < 1; (ii) pure plumes, i.e. plumes with source conditions giving Γ = 1;
and (iii) lazy plumes (with a deficiency of initial momentum flux when compared
with the equivalent pure plume) for Γ > 1. We have shown that plumes arising from
these sources are equivalent to point source pure plumes (F0, 0, 0), of buoyancy only,
located at an asymptotic virtual source located behind the actual source at z = 0.

For Γ > 1/2, the appropriate lengthscale for the adjustment of a turbulent plume to
that of a point source pure plume is the source radius and comparisons made between
the predicted location of the asymptotic virtual origin and its location deduced from
measurements of volume flow rate in turbulent saline plumes for Γ > 1 show close
agreement, supporting the scalings used in the analysis.

It is questionable whether the standard entrainment assumption of MTT, namely,
that the entrainment velocity is a constant fraction α of the vertical velocity, is
appropriate near the source of plumes with source conditions yielding Γ � 1. In the
region of the plume undergoing contraction, vertical velocities are relatively low and
the flow is unlikely to be fully turbulent. An investigation of the rate of entrainment
close to the source for Γ � 1 is currently under progress.
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Energy Related Environmental Issues (EnREI) in Buildings programme. N. G. K.
would like to acknowledge the financial support of the Commonwealth Scholarship
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Appendix A
Although not stated explicitly in Morton (1959a), the constant −1.057 in (7) is

obtained after summing the series

δm =

∞∑
n=1

(
1

2n−1n!(3− 10n)

n∏
m=1

[1 + 2(m− 1)]

)
≈ −0.3324 (A 1)

which enters the expression for the virtual source as follows

zv

Lm
= −21/251/2( 2

3
+ δm) ≈ −1.057. (A 2)

The series represents an approximation to the integral

z = 21/251/2

∫ ν

1

(ν5 − 1)−1/2ν3 dν, (A 3)

where ν = (M/M0)
1/2, such that

z

21/251/2
≈ 2

3
ν3/2 + O(ν−7/2)− [ 2

3
+ δm

]
. (A 4)

Appendix B
Adopting the standard entrainment assumption (Morton et al. 1956) the flow above

a two-dimensional turbulent line plume in an unstratified environment and in the
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Boussinesq limit may be described by the system of conservation equations

dQ̂L/dz = 2aαM̂L/Q̂L, (B 1)

dM̂L/dz = Q̂LB̂L/M̂L, (B 2)

dB̂L/dz = 0, (B 3)

where the subscript L denotes ‘per unit length’ and a =
√

2 for Gaussian profiles.
Here, B, Q and M denote the actual fluxes. Non-dimensionalized on the source
conditions (B 1)–(B 2) reduced to

dqL/dz
∗ = mL/qL, (B 4)

dmL/dz
∗ = ΓLqL/mL, (B 5)

where qL = Q̂L/Q̂L0, mL = M̂L/M̂L0, z
∗ = 2aα(M̂L0/Q̂

2
L0)z and the source parameter

ΓL =
1

2aα

Q3
L0BL0

M3
L0

. (B 6)

Following an analysis similar to that presented in § 2 we find that

Γ
1/3
L z∗ =

∫ q

1

q(q3 − φL)−1/3dq, (B 7)

where

φL =
ΓL − 1

ΓL
. (B 8)

It may then be shown that the non-idealized two-dimensional line plume
(BL0,ML0, QL0) may be replaced by the point source pure plume (BL0, 0, 0) located a
distance

zavs

(Q2
L0/2aαML0)

=
1− δL
Γ

1/3
L

, (B 9)

behind the actual source, where δL denotes the series

δL =

∞∑
n=1

(
φnL

n!(3n− 1)

n∏
j=1

(
1 + 3(j − 1)

3

))
. (B 10)

This correction is valid providing ΓL > 0.5.

Appendix C
For a parabolic velocity profile (laminar flow) at the nozzle exit

M̂0 =
2√
3

Q̂2
0

A
, (C 1)

whereas for a uniform velocity profile (turbulent outflow)

M̂0 = Q̂2
0/A, (C 2)

i.e. M̂0 is approximately 15% larger for a laminar outflow, and these extremes of
outflow profiles lead to differences of approximately 30% in the resulting values of

Γ (∼ M̂−5/2
0 ).
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Baines, Turner & Campbell (1990) propose a technique for the (indirect) measure-
ment of the source momentum flux M̂0 based on a variation of the original ‘filling
box’ experiment of Baines & Turner (1969). A weakly buoyant jet, rather than a
highly buoyant plume (cf. Baines & Turner 1969), is used as the source in the filling
box and the position of the first ‘front’ tracked in time. The method, as outlined
below and adopted, for example, by Bloomfield & Kerr (1998), relies on the initial
momentum flux M̂0 being conserved. The flow from the source is therefore required
to be essentially jet-like over the entire height H of the box (this requires that the

jet length ∼ M̂
3/4
0 /F̂

1/2
0 be significantly larger than H) although a small density con-

trast is necessary to establish the front. In practice, even for source conditions giving

M̂
3/4
0 /F̂

1/2
0 ≈ H , establishing a saline front is difficult owing to considerable mixing

which occurs when the jet-like flow collides with the base of the container and, in ad-
dition, owing to the subsequent ‘overturning’ motion as the resulting outflow collides
with the sidewalls of the container and is forced upwards before being entrained into
the jet. The true ‘filling box’ behaviour with a horizontal front as described by Baines
& Turner (1969) was typically not established.

The rate of change in the vertical position z0 of the front from the source is

dependent upon the volume flow rate Q̂(z0) in the weakly buoyant jet at the height
of the front and the cross-sectional area S of the box:

dz0/dt = Q̂(z0)/S. (C 3)

Providing the initial momentum flux M̂0 of the source is conserved, then the volume
flow rate at the front is of the form

Q̂ = CjM̂
1/2
0 (z + zvj)|z=z0

, (C 4)

(see Fischer et al. 1979), where zvj denotes the virtual origin of the jet and Cj , an
empirical constant. Following Baines & Turner (1969) we assume that the first front
forms instantaneously at the ceiling of the box, i.e. at time t = 0, z0 = H . Combining
(B 1) and (B 2) and integrating gives

ln

(
z0 + zvj

H

)
= Cj

M̂
1/2
0

S
t. (C 5)

Plotting the data from experiment in the form of ln ((z0 + zvj)/H) against time

should yield a straight line with a gradient of CjM̂
1/2
0 /S for the appropriate value

of zvj (which may be deduced using the iterative method of Baines & Turner 1969)
providing the flow is jet-like and the box fills in a classical filling box fashion. By
fitting a straight line to the data, the gradient may be measured and, hence, the initial
momentum flux determined. This method is sensitive to the gradient of the fit as
M̂0 ∼ gradient2. Furthermore, considerable variability in the value of the coefficient
Cj has been recorded in the literature: Cj = 0.25 (Fischer et al. 1979), 0.282 (Ricou
& Spalding 1961) and 0.404 (Schlichting 1968). This variation leads to a high degree
of uncertainty regarding the value of M̂0 deduced. For example, if instead of taking
Cj = 0.25 (Fischer et al. 1979) we take Cj = 0.282 (Ricou & Spalding 1961), M̂0

increases by over 27%. This increase is almost double the difference in the source
momentum flux between laminar and turbulent flows (see (C 1) and (C 2)).

Owing to the design of the nozzles used in the lazy plume experiments reported
herein, the source momentum flux was not determined experimentally but rather the
velocity profile was taken to be uniform so that M̂0 = Q̂2

0/A.
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